Quality of Groundwater Used for Domestic Supply in the Modesto, Turlock, and Merced Subbasins of the San Joaquin Valley, California
Zeno F. Levy, Mariia Balkan, Jennifer L. Shelton | January 6th, 2023
More than 2 million Californians rely on groundwater from privately owned domestic wells for drinking-water supply. This report summarizes a water-quality survey of domestic and small-system drinking-water supply wells in the Modesto, Turlock, and Merced subbasins of the San Joaquin Valley where more than 78,000 residents are estimated to use privately owned domestic wells. Results indicate that inorganic and organic constituents in groundwater were respectively present above regulatory (maximum contaminant level, MCL) benchmarks for public drinking-water quality in 37 percent and 9 percent of the aquifer area used for domestic drinking-water supplies (herein, “domestic groundwater resources”).
The most prevalent inorganic constituents exceeding regulatory benchmarks were nitrate, uranium, and arsenic. The only organic constituents exceeding regulatory benchmarks were the fumigant constituents 1,2,3-trichloropropane (1,2,3-TCP) and 1,2-dibromo-3-chloropropane (DBCP), but the herbicides atrazine and simazine were detected at low concentrations below one-tenth of regulatory benchmarks in 30 percent of domestic groundwater resources. Total dissolved solids (TDS) and manganese exceeded aesthetic-based (secondary maximum contaminant level [SMCL]) benchmarks for drinking water in 3 percent and 13 percent of domestic groundwater resources, respectively. Per- and polyfluoroalkyl substances (PFAS) were detected in 23 percent of domestic groundwater resources, with 4 percent exceeding California state notification or response levels for specific compounds. Total coliform bacteria were detected in 20 percent of domestic groundwater resources.
Elevated concentrations of nitrate, uranium, TDS, and pesticides (fumigant constituents and herbicides) are related to agricultural land use and were typically present at shallow depths up to 75 meters below land surface. Agriculturally derived constituents were detected in wells screened below the Corcoran Clay Member of the Tulare Formation (herein, “Corcoran Clay”) in the southeastern part of the study area, where the Corcoran Clay tends to be shallower and thinner than in areas to the northwest. Nitrate, uranium, and TDS were most prevalent in the northwest part of the study area proximal to the valley trough where soils are poorly drained and agricultural land uses are predominantly grain, alfalfa, and dairy farms. Pesticides tended to occur in groundwater below coarse-grained surficial deposits and within a northwest to southeast trending band along the eastern extent of the Corcoran Clay that typically demarcates the western extent of well-drained soils associated with perennial orchard crops. Elevated concentrations of arsenic tended to occur west of this band in reducing groundwater but also sometimes co-occurred with elevated nitrate in oxic groundwater, most likely because of geochemical conditions in agriculturally affected groundwater that can enhance the mobility of arsenic from aquifer sediments.
Keywords
agricultural drainage, Central Valley, groundwater contamination, Groundwater Exchange, monitoring, pesticides, water quality