Nature Portfolio (Springer Nature) | September 3rd, 2018
Summary
Greenhouse gas-induced climate change is expected to lead to negative hydrological impacts for southwestern North America, including California (CA). This includes a decr
Greenhouse gas-induced climate change is expected to lead to negative hydrological impacts for southwestern North America, including California (CA). This includes a decrease in the amount and frequency of precipitation, reductions in Sierra snow pack, and an increase in evapotranspiration, all of which imply a decline in surface water availability, and an increase in drought and stress on water resources. However, a recent study showed the importance of tropical Pacific sea surface temperature (SST) warming and an El Niño Southern Oscillation (ENSO)-like teleconnection in driving an increase in CA precipitation through the 21st century, particularly during winter (DJF). Here, we extend this prior work and show wetter (drier) CA conditions, based on several drought metrics, are associated with an El Niño (La Niña)-like SST pattern. Models that better simulate the observed ENSO-CA precipitation teleconnection also better simulate the ENSO-CA drought relationships, and yield negligible change in the risk of 21st century CA drought, primarily due to wetting during winter. Seasonally, however, CA drought risk is projected to increase during the non-winter months, particularly in the models that poorly simulate the observed teleconnection. Thus, future projections of CA drought are dependent on model fidelity of the El Niño teleconnection. As opposed to focusing on adapting to less water, models that better simulate the teleconnection imply adaptation measures focused on smoothing seasonal differences for affected agricultural, terrestrial, and aquatic systems, as well as effectively capturing enhanced winter runoff.